State of the art in the use of bioceramics to elaborate 3D structures using robocasting

Juliana Kelmy Macário Barboza Daguano1,2,3; Claudinei dos Santos4; Manuel Fellipe Rodrigues Pais Alves5; Jorge Vicente Lopes da Silva6; Marina Trevelin Souza2; Maria Helena Figueira Vaz Fernandes2

1Universidade Federal do ABC, Grupo de Pesquisa em Biomateriais (UFABC–GPBioma), Alameda da Universidade, s/n, Anchieta, São Bernardo do Campo (SP), Brazil.
2Universidade de São Paulo, Escola de Engenharia de Lorena (USP-EEL-DEMAR), Pólo Urbo-IIndustrial, Gleba AI-6, s/n, Lorena (SP), Brazil.
3Universidade Federal do ABC, Grupo de Pesquisa em Biomateriais (UFABC–GPBioma), Alameda da Universidade, s/n, Anchieta, São Bernardo do Campo (SP), Brazil.
4Universidade Federal do ABC, Grupo de Pesquisa em Biomateriais (UFABC–GPBioma), Alameda da Universidade, s/n, Anchieta, São Bernardo do Campo (SP), Brazil.
5Universidade Federal do ABC, Grupo de Pesquisa em Biomateriais (UFABC–GPBioma), Alameda da Universidade, s/n, Anchieta, São Bernardo do Campo (SP), Brazil.
6Universidade Federal do ABC, Grupo de Pesquisa em Biomateriais (UFABC–GPBioma), Alameda da Universidade, s/n, Anchieta, São Bernardo do Campo (SP), Brazil.

Abstract: Robocasting, also known as Direct Ink Writing, is an Additive Manufacturing (AM) technique based on the direct extrusion of colloidal systems consisting of computer-controlled layer-by-layer deposition of a highly concentrated suspension (ceramic paste) through a nozzle into which this suspension is extruded. This paper presents an overview of the contributions and challenges in developing three-dimensional (3D) ceramic biomaterials by this printing method. State-of-the-art in different bioceramics as Alumina, Zirconia, Calcium Phosphates, Glass/Ceramic–ceramics, and composites is presented and discussed regarding their applications and biological behavior, in a survey comprising from the production of customized dental prosthesis to biofabricating 3D human tissues. Although robocasting represents a disruption in manufacturing porous structures, such as scaffolds for Tissue Engineering (TE), many drawbacks still remain to overcome and although many efforts have been done to optimize this technique is far from allowing the obtaining of dense parts. Thus, strategies for manufacturing densified bioceramics are presented aiming at expanding the possibilities of this AM technique. The advantages and disadvantages and also future perspectives of applying robocasting in bioceramic processing are also explored.

Keywords: Additive Manufacturing (AM); Direct Ink Writing (DIW); Robocasting; Bioceramics; Challenges; Perspectives.

Introduction

Technical Approaches – Additive Manufacturing and Robocasting

By definition, Biomaterials are nontoxic materials, natural or synthetic, that are useful towards the repair or even replacement of damaged body parts via interaction with living systems. The interactions of the material with the host tissue can occur at different levels, from a minimum response (inert biomaterial), to an intimate interaction with the human cells, sometimes replacing the function of the body or even carrying out their functions (bioactive or resorbable biomaterials). As soon as scientists and engineers understood that it was possible to modulate the biocompatibility of materials for biomedical applications, novel and advanced manufacturing techniques were explored. Those processes aimed to produce multicomponent structures otherwise difficult to obtain using conventional routes, reduce cost and also improve performance after implantation. Within this context, Additive Manufacturing (AM) arises as a solution.

Ceramic robocasting is a direct AM technology, also named as Direct Ink Writing (DIW), based on the Material Extrusion process. In 2000, Cesarano patented and developed the technique, that consists in a computer-controlled extrusion of a viscous ceramic suspension with a high solid loading through a small-orifice creating filaments that are placed in a layer-by-layer deposition process. Figure 1 shows a schematic diagram illustrating this technique for obtaining of inert ceramic based on ZrO2–Y2O3–(Y–TzP).

This suspension (or colloidal system) must demonstrate a suitable rheological behavior, undergoing a transformation from a pseudoplastic to a dilatant behavior when extruded in air, and following a computer-aided design model to form the 3D structures. Unlike other AM techniques, as Stereolithography (SLA), Digital–Light–Processing (DLP), and Fused Deposition Material (FDM), that usually involve binder–rich contents, this method does not use any binder (above 40% v/v) – which may lead to sudden outgassing and crack formation due to excessive shrinkage of the structure in – in robocasting process, concentrated ceramic suspensions are prepared using solid loading close to 40% (v/v) and dispersants/binders less than 3% (v/v).

As ceramic robocasting is not a one-step AM process, the resultant green body needs to undergo a debinding process to burn off the organic additives and a subsequent sintering process to densify the structure. After drying, the materials fabricated by robocasting have a high green density (up to 60%), which allows almost complete densification upon sintering, achieving a sintered strut density near 95%. A recent study explored the rapid sintering of 3D–plotted tricalcium phosphate (TCP) scaffolds with the aim of getting the on–on-demand scaffold fabrication closer towards the clinical practice. The rapid and reactive pressure–less sintering of TCP scaffolds can be achieved merely during 10 min by applying fast heating rates in the order of 100 °C/min. A robocasting appears as a new tool to process bioceramics since this is a notoriously difficult material to be processed. Firstly, due to its inherent high melting point. Ceramics usually have complex phase diagrams, which indicate that after melting new phases can form as well as unexpected changes in their properties, even the biocompatibility. Secondly, the high–high–temperature processing of ceramics can cause uncontrollable porosity and cracks. When it comes to porous materials for Tissue Engineering, interconnected pores are desirable to promote cellular growth and implant fixation, although they can decrease the mechanical properties of the final parts. Hence, a balance between mechanical properties and biological behavior should be found for different applications. An advantage of almost all ceramic systems is that ceramic powders are commercially available with a wide range of characteristics. Therefore, the possibility of using the robocasting technique, regarding the manufacture of porous or dense ceramic structures with complex morphology is particularly attractive when compared with the slurry–based methods, especially to produce biomedical devices that are aimed to meet the peculiarities of each patient.

In this article, we aim to review the most recent contributions and challenges on porous and dense bioceramic structures obtained by the robocasting technique as well as the latest trends in 4D printing materials for biomedical applications. Some current challenges and possible solutions regarding the ideal system for the fabrication of dense robocast ceramic parts with optimal properties will be discussed with the perspective of the potential popularization and viability of this technique.

Main Challenges in Robocasting

The manufacture of dense parts by robocasting encounters severe reservations mainly because the applications of dense bioceramics are associated with the need of adequate mechanical strength and reliability for long use periods. Also, it should be considered the requirement of an appropriate biological response, independently of the particular application (dental prostheses or implants, intracranial pins, orthopedic).

Technologies that use a large amount of volatile content such as robocasting, as ~40% of the extruded paste is composed of water and polymeric binder, debinding is a potentially problematic step when dense monolithic components are intended.

An efficient strategy to circumvent the limitation to robocasting dense parts is based on the knowledge from developing similar bioceramics, obtained by techniques that use ceramic materials as injection molding or gelcasting. These conventional molding methods are used for the manufacture of near–net–shape ceramics with highly complex final geometries. A major challenge is the controlling of the spatial distribution of the pores, and in the case of dense biomaterials, the control and minimization of pores and the overall porosity.

After the removal of the liquid phase or plasticizers, which is notably a very complex stage, considerably high residual stress can be achieved, depending, among other factors, mainly on the sinterability of the studied ceramic material. Currently, most ceramic suspensions or pastes used as feedstock for AM are based on significant amounts (40 to 60% v/v) of organic binders. The efficient removal of the remaining organic requires experimental skills and acquired knowledge of the process, but many limitations still exist when it comes to monolithic structures that present a large wall thicknesses or large volumes. Thus, plasticizers should be adequately chosen because their evaporation rate is crucial for the process and it can be adapted to the specific needs of the particular AM method.

In a recent years, this technique has been employed to form parts of different ceramic structures such as alumina (Al2O3), silicon carbide (SiC), and glass-ceramics.
Porous Bioceramics

TE is a multidisciplinary research field that began in 1980s and combines engineering and life sciences in order to develop new methods for tissue replacement with improved functionality. A prime step in TE is the development of complex 3D shapes with tailored external geometries, pore volume fractions, pore sizes and controlled interconnectedness. The 3D scaffolds are mainly designed to be a temporary implant, acting as a template for new cells growth while continuously and steadily degrading during/after the healing process, so that the seeded cells can grow and proliferate to regenerate into a new tissue.59,60 Currently, most of the studies have used 3D printing as a tool to make scaffolds for TE. Therefore, the microstructure features, i.e., interconnected porosity, pore size distribution, and filament aspects, are critical factors to assure mechanical properties similar to those of the tissue and appropriate biocompatibility.61

Some aspects of bioceramic ink parameters, such as ink chemistry, processing additive (dispersant, binder, gelation agent), solids loading, powder reactivity, ceramic particle size, and distribution, must be understood since they have a significant effect on the printing quality. Besides, there is a strong correlation between particle size distribution and the force needed to extrude ceramic loaded inks, such that a wide particle distribution allows the formulation of higher particle loaded inks. Namely, Nom et al. described how wide distributions allow for intimate packing of the particles within the ink, resulting in denser filaments post sintering. Also, they suggested that Pluronic F-127, a water soluble block co-polymer surfactant with thermally reversing rheological behaviour, consisting of poly (ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) tri-blocks (PEO–PPO–PEO), can be used as a universal binder.62 Estefash et al. have suggested a simple recipe for robocasting 3D scaffolds. They reported that aqueous suspensions containing 45% (w/w) of 4555 Bioglass were successfully prepared using 1 wt% carboxymethyl cellulose (CMC–250MW) as additive, tuning the rheological properties of the inks to meet the stringent requirements of robocasting. Another information is that an incomplete surface allowing bridging flocculation to occur is the key to obtain highly performing inks.63 Recently, Koski et al. proposed a natural polymer binder system in ceramic composite scaffolds, through the utilization of naturally sourced gelatinized starch with hydroxyapatite (HA), in order to obtain green parts without the need of crosslinking or post-processing.64

Scaffolds produced by robocasting generally possess better mechanical properties compared to those produced by indirect AM technologies, because they usually exhibit a cubic geometry with orthogonal pores, whereas scaffolds produced by other techniques mostly present a cylindrical geometry with orthogonal or radial pores. The difference in strength can reach one order of magnitude. Scaffolds struts produced by robocasting can be almost dense after sintering thus improving their mechanical properties.65

Marques et al. reported the development of 3D porous calcium phosphate scaffolds by robocasting from biphasic (HA/β-TCP = 1.5) powders, undoped and co–doped with Sr and Ag, where the ceramic slurry content was around 50% (v/v). After sintering at 1100 °C, scaffolds with different pore sizes and rod average diameter of 410 mm were obtained. The compressive strength was comparable to or even higher than that of cancellous bone. Sr and Ag enhanced the mechanical strength of scaffolds, conferred good antimicrobial activity against Staphylococcus aureus and Escherichia coli, and did not induce any cytotoxic effects on human MG–63 cells. Furthermore, the co–doped powder was more effective in inducing pre–osteoblastic proliferation.66

To meet the requirements of a 3D scaffold, in vitro and in vivo tests are key steps for the development of new suitable biomaterials. In the following tables, we present a concise review on the in vitro and in vivo assays performed with robocasted bioceramics and biocomposite scaffold and their outcomes and relevance to the field. There is a vast literature exploring the mechanical behaviour of 3D bioactive glass scaffolds manu-

Bioceramics for 3D printing using the Robocasting technique

Due to their unique properties, bioceramics play a privileged role within the diversity of available biomaterials.67,68,69 The bioceramics market is expected to rise around 7% during the forecast period of 2019 – 2024.70 This is a motivation for a fast progress in bioceramic robocasting technology, and to keep up with the growth of the market.

For a better understanding of the state–of–art of robocasting, the literature review will be divided into two sections, (i) porous bioceramics and (ii) fully dense monolithic bioceramics, as schematically distinguished in Figure 2.

Figure 2 – Bioceramics fabricated by robocasting: (top right hand corner) fully dense monolithic parts, (bottom right hand corner) porous structures.

(SiC),71 silicon nitride (Si,N),72 Yttrium–stabilized zirconia (ZrO,)44 and some bioactive glasses.73,74,75 Most of the reported works include rheological studies that allow the formulation of the ideal compositions of ceramic masses and their respective optimized suspensions aiming at particular porosity and mechanical performance of the sintered parts.

Another challenge is related to mechanical properties of robocasted bioceramics. Essentially, ceramics are fragile. In this sense, a strategy proposed to ripen mechanical properties of robocast bioceramic scaffolds could be to combine the ceramic with a polymeric material. The fabrication of hybrid polymeric/ceramic porous scaffolds with coreshell struts thus, appears as an interesting possibility. This strategy provides enhanced toughness without affecting, in principle, the bioactivity of the scaffold surfaces or the interconnected porosity required for bone tissue regeneration.26 Another possibility is creating 3D Printing Bioinspired ceramic composites, using the biomimetic concept. A classic example is nacre, which boils a combination of high stiffness, strength, and fracture toughness. Various microstructural features contribute to the toughness of nacre, including mineral bridges, nano–asperities, and waviness of the constituent platelets. In this sense, it would be possible to replicate natural structures and build highly mineralized materials that retain strength while enhancing toughness.27

Bioceramics for 3D printing using the Robocasting technique

Due to their unique properties, bioceramics play a privileged role within the diversity of available biomaterials.67,68,69 The bioceramics market is expected to rise around 7% during the forecast period of 2019 – 2024.70 This is a motivation for a fast progress in bioceramic robocasting technology, and to keep up with the growth of the market.

For a better understanding of the state–of–art of robocasting, the literature review will be divided into two sections, (i) porous bioceramics and (ii) fully dense monolithic bioceramics, as schematically distinguished in Figure 2.
<table>
<thead>
<tr>
<th>Authors</th>
<th>Material Tested</th>
<th>Scaffold Characteristic</th>
<th>Pore Size</th>
<th>In Vitro Test</th>
<th>Cell Line</th>
<th>Time</th>
<th>Outcomes</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chung-Hun et al.</td>
<td>Sol-gel bioactive glass (70SiO$_2$, 25CaO – 5P$_2$O$_5$) and PCL</td>
<td>Degradable macro-channelled scaffolds</td>
<td>~500 μm</td>
<td>MTT assays in static and dynamic</td>
<td>hASCs</td>
<td>Up to 28 days</td>
<td>Cells were viable and grew actively on the scaffold assisted by the perfusion culturing (dynamic condition). Osteogenic development of hASCs was upregulated by perfusion culturing</td>
<td></td>
</tr>
<tr>
<td>Gao et al.</td>
<td>Gelatin + sol-gel bioactive glass (70SiO$_2$, 25CaO – 5P$_2$O$_5$, mol-%)</td>
<td>Cubic shaped scaffolds and a grid-like microstructure</td>
<td>~30%</td>
<td>Cell viability and ALP activity</td>
<td>MC3T3-E1</td>
<td>Up to 21 days</td>
<td>Scaffolds supported cell proliferation, ALP activity, and mineralization</td>
<td></td>
</tr>
<tr>
<td>Richard et al.</td>
<td>Β-TCP, Β-TMCP, and BCMP</td>
<td>Inter-rod spacing of ~460 μm</td>
<td>Β-TCP=32%</td>
<td>MTT assay, ALP, Osteocalcin, TGF-β1, and Collagen</td>
<td>MC3T3-E1</td>
<td>7, 14 and 21 days</td>
<td>No toxicity for this cell line. Calcium module formation and bone markers activity suggested that the materials would induce bone formation in vitro.</td>
<td></td>
</tr>
<tr>
<td>Won et al.</td>
<td>Fibroinectin–gelatin, hydroxyapatite glass (85 SiO$_2$, 15CaO, 5P$_2$O$_5$) and PCL</td>
<td>Biocompatible nanocomposite scaffolds</td>
<td>~30%</td>
<td>Cell viability and ALP activity</td>
<td>BMSCs</td>
<td>14 days</td>
<td>Scaffolds significantly improved cells responses, including initial anchorage and subsequent cell proliferation</td>
<td></td>
</tr>
<tr>
<td>Varanesi et al.</td>
<td>PCL and PLA-hydroxyapatite (70 wt-%)</td>
<td>2D films and 3D porous scaffolds</td>
<td>~76%</td>
<td>MTT assay</td>
<td>MCT3-E1</td>
<td>7 days</td>
<td>No deleterious influence of the polymer degradation products on the cells and HA acted as a support for osteoblast cytoskeletal attachment, promoting their proliferation</td>
<td></td>
</tr>
<tr>
<td>Andrade et al.</td>
<td>Β-TCP and gelatin</td>
<td>Flexible bio-ceramic scaffolds with pore size of ~200 μm</td>
<td>45%</td>
<td>Cell proliferation in static and dynamic conditions</td>
<td>MC3T3-E1</td>
<td>3, 7, 13 and 21 days</td>
<td>Both culture systems fostered cell proliferation up to day 21, however, the dynamic methodology (oscillatory flow variation) achieved a higher cell proliferation</td>
<td></td>
</tr>
<tr>
<td>Martinez-Vazquez et al.</td>
<td>Hydroxyapatite (HA)</td>
<td>Prepared by drying at room temperature or the freeze-drying method</td>
<td>71–77%</td>
<td>Cell Viability</td>
<td>MC3T3</td>
<td>1, 3, 7, and 12 days</td>
<td>Freeze-dried scaffolds presented a significantly increase in initial cell count and cell proliferation rate when compared to the conventional evaporation method</td>
<td></td>
</tr>
<tr>
<td>Fisco et al.</td>
<td>Silica–bonded calcite</td>
<td>Two spacing between rods: 300 µm and 350 µm</td>
<td>56%–64%</td>
<td>Cell adhesion and distribution</td>
<td>ST-2 cells</td>
<td>1, 3, 7 and 14 days</td>
<td>Cells showed high metabolic activities and expressed typical osteoblastic phenotype. Mineral deposition after cell culture was observed and all the scaffolds stimulated cell adhesion and proliferation</td>
<td></td>
</tr>
<tr>
<td>Stanciuc et al.</td>
<td>Zirconia–toughened (ZTA) alumina (ZTA)</td>
<td>Robocasting of 2D pieces and 3D-ZTA scaffolds</td>
<td>30–50%</td>
<td>Cell viability, ALP activity, gene expression and mineralization</td>
<td>human primary osteoblasts (hOB)</td>
<td>10, 20 and 30 days</td>
<td>2D-ZTA presented a higher ALP activity and an increased hOB cells proliferation than the 3D-ZTA scaffolds. Runoff was upregulated on all samples after 10 days.</td>
<td></td>
</tr>
<tr>
<td>Ben-Ars et al.</td>
<td>Sol-gel glass composition (64.4SiO$_2$, 3.4CaO, 27.3CaO–5.09 P$_2$O$_5$, wt-%)</td>
<td>Different pore sizes: 300, 400 and 500 μm; with dimensions of 3 x 3 x 4 mm</td>
<td>~47%</td>
<td>MTT assays according to ISO 10993–5 standard</td>
<td>MG63 osteoblasts</td>
<td>7 days</td>
<td>Within the pore size range tested, pore size did not exert any significant influence on cell viability, presenting no cytotoxicity towards the osteoblasts</td>
<td></td>
</tr>
</tbody>
</table>

Table 1 – In vitro studies with robocast scaffolds from different materials.
In vivo studies with robocast scaffolds from different materials.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Material Tested</th>
<th>Characteristics</th>
<th>Porosity</th>
<th>In Vivo Test</th>
<th>Animal Model</th>
<th>Time</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liu et al.</td>
<td>Bioactive glass 13–93</td>
<td>Scaffolds. BMP2 loaded and/or pretreated in phosphate solution</td>
<td>90%</td>
<td>Histomorpho–metric analysis</td>
<td>Calvarial defects of Ø 4.6 mm in rats</td>
<td>6 weeks</td>
<td>BMP-2 pre–conditioned scaffolds significantly enhanced the capacity to support new bone formation. In vivo reduction in mechanical properties was greater than in vitro due to greater glass dissolution and faster conversion of the glass into HCA.</td>
</tr>
<tr>
<td>Liu et al.</td>
<td>Bioactive glass 13–93</td>
<td>6 x 6 x 6 mm scaffolds, pore width of 300 µm</td>
<td>47%</td>
<td>Mechanical properties during in vitro and in vivo tests</td>
<td>Subcutaneous model in rats</td>
<td>Up to 12 weeks</td>
<td>All scaffolds were infiltrated with fibrous tissue and blood vessels. No difference was found in the formation of the fibrous tissue for the different pore sizes.</td>
</tr>
<tr>
<td>Dellinger et al.</td>
<td>Bioactive glass 13–90B</td>
<td>Scaffolds with different pore sizes >300, 600 and 900 µm</td>
<td>45–60%</td>
<td>Histological exploring tissue growth and blood vessel infiltration</td>
<td>Subcutaneous model in rats</td>
<td>4 weeks</td>
<td>Bone regeneration increased with implantation time, and pretreating and BMP2 loading significantly enhanced the bone formation rate (for all studied times).</td>
</tr>
<tr>
<td>Rahman et al.</td>
<td>Bioactive glass 13–93</td>
<td>Scaffolds with or without BMP2 and pretreatment in phosphate solution</td>
<td>90%</td>
<td>Histological, histomorpho–metric analysis and SEM</td>
<td>Calvarial defects of Ø 4.6 mm in rats</td>
<td>6, 12 and 24 weeks</td>
<td>BMP2 scaffolds significantly enhanced bone regeneration and their pores were almost completely infiltrated with lamellar bone within 12 weeks. BMP2 scaffolds also had a significantly higher number of blood vessels at 6 and 12 weeks.</td>
</tr>
<tr>
<td>Lin et al.</td>
<td>Bioactive glass 13–93</td>
<td>Scaffolds with or without BMP2 loading</td>
<td>47%</td>
<td>Histological, SEM, and Histomorpho–metric analysis</td>
<td>Calvarial defects of Ø 4.6 mm in rats</td>
<td>6, 12 and 24 weeks</td>
<td>Bone ingrowth at 8 and 16 weeks were comparable for all samples. Bone attached directly to HA rods indicating osseoconduction.</td>
</tr>
<tr>
<td>Simon et al.</td>
<td>Hydroxyapatite (HA)</td>
<td>Scaffolds with different rod sizes and porosities (different macropores–pores–channels)</td>
<td>Different pore channels, from 250 to 750 µm</td>
<td>Micro–CT scans, histological and SEM analysis</td>
<td>Calvarial defects of Ø 11 mm in rabbits</td>
<td>8 and 16 weeks</td>
<td>BMP–2 loaded scaffolds presented a significantly greater bone formation at both experimental times. The cells used the scaffolds as a template since the lamellar bone was aligned near the scaffolds’ rod junctions.</td>
</tr>
<tr>
<td>Dellinger et al.</td>
<td>Hydroxyapatite (HA)</td>
<td>Scaffolds with and without BMP–2 loading</td>
<td>Pores of 100–700 µm</td>
<td>Histological analysis</td>
<td>Metacarpal and metatarsal bones defects of Ø 0.6 mm in goats</td>
<td>4 and 8 weeks</td>
<td>HSP scaffolds possessed a superior bone–forming ability and micro–CT analyses showed that new bone started to grow in the macropores and also into the hollow channels of the scaffolds.</td>
</tr>
<tr>
<td>Luo et al.</td>
<td>CaSiP2O7</td>
<td>Hollow–struts–packed (HSP) bioceramic scaffolds</td>
<td>Up to 85%</td>
<td>Micro–CT and histological analysis</td>
<td>Critical femoral bone defects of Ø 0.10 mm in rabbits</td>
<td>4 and 8 weeks</td>
<td>CHA scaffolds facilitated new bone growth, as the bioceramic was resorbed or incorporated into the newly formed bone. CHA promoted better defect repair compared to the nonprinted CHA scaffolds.</td>
</tr>
<tr>
<td>Lin et al.</td>
<td>Collagen and hydroxyapatite (CHA)</td>
<td>Biomimetic 3D scaffolds via a low–temperature process 3 rod widths: 300, 600 and 900 µm</td>
<td>72–83%</td>
<td>micro–CT and histological analysis</td>
<td>Ø 5 mm defects in the femur (condyle) of rabbits</td>
<td>2, 4, 8, or 12 weeks</td>
<td>CHA scaffolds displayed higher osteogenic capability when compared to CSI–Mg10 and CSI–TCP after 8 weeks. After 8 and 12, CSI–Mg10/TCP15 presented an increase in their mechanical properties, possibly due to the new bone tissue ingrowth into the scaffolds.</td>
</tr>
<tr>
<td>Shao et al.</td>
<td>Magnesium–doped wollastonite/TCP</td>
<td>CSI–Mg10 (10 mol% of Mg in CSI–Mg10/TCP15 (15–wt% TCP content)) and pure β–TCP</td>
<td>52–60%</td>
<td>Micro–CT, histological and mechanical tests</td>
<td>Calvarial defects of Ø 8.0 mm in rabbits</td>
<td>4, 8 and 12 weeks</td>
<td>CSI–Mg10/TCP15 scaffolds displayed higher osteogenic capability when compared to CSI–Mg10 and CSI–TCP after 8 weeks. After 8 and 12, CSI–Mg10/TCP15 presented an increase in their mechanical properties, possibly due to the new bone tissue ingrowth into the scaffolds.</td>
</tr>
</tbody>
</table>

Table 2 – In vivo studies with robocast scaffolds from different materials.
Fully dense monolithic bioceramics

When developing dense bioceramics by robocasting several parameters should be examined in a sequential step process that should be used to plan new studies. Based on information regarding the materials and the processing parameters, it is possible to create a robocasting suspension development strategy. This is shown in Figure 3. Figure 3 shows the level of complexity associated with the development of new ceramic inks. It necessarily involves a technical study aimed at understanding the effects of solid fractions (particle quantities, sizes, and morphology) on the ink. At the same time, it is crucial to understand the interaction of the ceramic material with the fluid selected for the ink manufacture, i.e., which additives can be used to achieve a stable and printable suspension. Finally, it is of major importance the definition of the printing strategy and for the robocasting processing parameters to be optimized. The following sections detail the relevant parameters to guide future developments on high densification of bioceramics.

Figure 3 – Robocasting suspension development strategy.

Morphology and Particle size distribution
There is a consensus in the literature on the need for highly refined starting powders with broad particle size distribution to maximize green body compactability and sinterability. In parallel, some authors state that solid loads with bimodal distributions induce a reduction of the ink’s viscosity when compared to suspensions manufactured with monodisperse distribution, for the same volume of suspended solids. Olihero and Ferreira fabricated three starter powder systems with variations in mean particle size for the preparation of trimodal suspensions. The authors found that the viscosity of the suspensions increased as the percentage of fine powders increased and, contrary to common sense, the powders with a high concentration of coarse solids showed a decrease in viscosity. This fact is due to the rheological behavior of the powders against the shear stress. Particle morphology, on the other hand, affects the rheology of suspensions secondarily, due to the dispersed solids content and particle size distribution, being much more impactful in colloidal suspensions. Besides, suspensions based on high aspect ratio particles, or heterogeneous morphologies, are more susceptible to shear flow than those based on spherical particles. Nuy et al. studied the rheology of two groups of graphite particles with different morphology, size, and surface area. The authors concluded that suspensions made with spherical particles had a significantly lower viscosity than those made with particles of anisotropic morphology. Regarding the shear flow mechanism, this phenomenon is explained by the resistance promoted by the viscous suspension to the rotation of the elongated particles against the ease of spherical particles, which offer low rotational resistance.

Figure 4 shows volumetric defects promoted by the concentric alignment of particles with high aspect ratio.

Table 3 presents some shrinkage results for different materials and additives as a function of the volume of suspended solids.

<table>
<thead>
<tr>
<th>Materials</th>
<th>Additives used</th>
<th>Solid loading (v/v)</th>
<th>Linear shrinkage (v/v)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y-TZP</td>
<td>PEG, OA, DSO and Silphene</td>
<td>37.5% - 32%</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Y-TZP</td>
<td>PVA (MW 11000), PEG (MW 400), Citric and Co-Citric</td>
<td>38%</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Si3N4</td>
<td>H-PEI, L-PEI and HPNC</td>
<td>20%</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Si3N4</td>
<td>Darvan 821A, nitric acid and ammonium hydroxide</td>
<td>52%</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Al2O3</td>
<td>Delapox CA, magnesium chloride and Alginic acid</td>
<td>45%</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>Al2O3</td>
<td>Darvan C-9, Bemcosil E and a polyethylene-urea solution</td>
<td>50%</td>
<td>17%</td>
<td></td>
</tr>
<tr>
<td>Al2O3</td>
<td>Delapox CE 84, PEG 400 and methacrylate</td>
<td>55%</td>
<td>15-19%</td>
<td></td>
</tr>
</tbody>
</table>

Mass solids content
Some authors reported that, wherever possible, the ideal solids content of inks for use in robocasting should be in the range of 40 to 45% and never below 30% (v/v); this would grant a dimensional and geometric predictability after sintering. Table 3 presents some shrinkage results for different materials and additives as a function of the volume of suspended solids. Moreover, the literature reiterates that suspensions with high saturation, greater than 50% (v/v) produce parts with high densification rates and low shrinkage and warp. Nevertheless, the stabilization of suspensions with high volumes of solids requires a thorough rheological analysis, mainly due to the need of controlling the shear stresses during the extrusion process. In general, the increase in mass viscosity with increasing volume of suspended solids can be directly attributed to the fact that a higher volumetric fraction of suspended ceramic particles further restricts the media flow. Rheological stabilization of suspensions

Controlling the rheological properties of the fluid is essential to prevent sag and part deformation after filament extrusion, especially when geometry includes complex shapes and bridged structures such as in scaffolds. An adequate behavior can be achieved in several ways, such as by controlled flocculation of the ceramic suspension to form a gel (e.g., change in pH, solvent ionic strength, the addition of polyelectrolytes) or by using gelating additives such as a reverse thermal gel. The literature highlights three mechanisms of solids stabilization in a suspension: electrostatic stabilization, arising from the presence of electric charges on the surface of the particles which counterbalances the attraction promoted by the van der Waals forces; steric stabilization, where the adsorption of polymers on the surface of the suspended material promotes the mechanical immobilization of the particles; and electrostrictive stabilization, a combination of electrostatic and steric stabilization, where polyelectrolytes are adsorbed on the surface of the particles and ions from the dissociation of the polyelectrolytes promote an adjacent electrostatic barrier. The mechanisms are demonstrated in Figure 5.

For the study of the stability of suspensions, a handy tool is the Zeta potential measurement, as it describes the potential difference between the dispersion medium and the stationary layer of boundary fluid at the surface of the dispersed particles. In other words, the technique makes it possible to assess the variation of a repulsive or attractive tendency among the solid particles as a function of the pH change in suspension and can be used to predict and control suspension stability. From this knowledge, the interaction forces can be adjusted accordingly, from a highly dispersed state in which repulsion forces dominate to a weakly flocculated or even strongly aggregated state by which attractive forces are predominant. In the case of aqueous suspensions with high solids concentration, it is common to use polyelectrolytes containing ionizable functional groups, such as amine (-NH3) or carboxylic (-COOH), for electrostatic stabilization, in addition to pH control.

Some authors support ideal rheological parameters to ensure mass printability, such as viscosity between 10 and 100 Pa s, elastic modulus between 105 and 106 Pa and yield stress between 104 and 105 Pa. For successful printing, concentrated ceramic suspension for robocasting has to possess suitable viscoelastic properties, as described by the Herschel–Bulkley model, shear-thinning flow behavior, and possessing relatively high modulus (G’), with G’ > 200 Pa to allow structural self-support and fabrication of high aspect ratio structures (Figure 6).

For this optimization, appropriate rheological modifiers, such as floculating/binder agents, should be added to the already stabilized, i.e., deflocculated, suspensions. In the usual approach to obtain the ideal parameters, reported in the literature, it is proposed the use of a deflocculating agent/binder, as opposed to the one used for the dispersion of the particles. This addition intends to control flocculation by promoting a reduction of the adsorbed layer. This procedure improves a bonding effect among the particles and should be accompanied by the addition of a rheological modifier, usually a long-chain polymer, aimed at stabilizing mass plasticity (steric stabilization). Table 4 summarizes these parameters.
Finally, some equations are presented as support for the controlling of parameters and print design. The ideal volumetric flow rate (Q) to fill the path taken by the print nozzle, ensuring the maintenance of the predicted specimen dimensions is essential for defining the robocasting parameters. Several authors suggest Equation (1) to specify this parameter:

\[
Q = \left(\frac{\pi}{4} \right) \cdot r^2 \cdot \frac{1}{\mu} \cdot \sigma_y
\]

where: \(Q \) = ideal volumetric flow rate (\(\mu \)m^3/s), \(r \) = radius of extrusion nozzle (\(\mu \)m) and \(\mu \) = shear rate (s^(-1)).

Since suspensions used in robocasting must have a dispersed solids fraction higher than 30% (v/v), they eventually exhibit shear-thinning flow behavior. Thus, several authors claim that the Herschel-Bulkley model, Equation (2), satisfactorily describes the degree in which the ink presents a shear-thinning or shear-thickening behavior.\(^{10,12}\)

\[
\sigma = \sigma_y + (\Gamma) \cdot \gamma \cdot n
\]

where: \(\sigma \) = shear stress (Pa), \(\sigma_y \) = dynamic yield stress (Pa), \(\kappa \) = viscosity parameter (Pa.s \(\cdot \) m), \(\gamma \) = shear rate (s^(-1)) and \(n \) = shear exponent, for \(n < 1 \) the fluid is shear-thinning, whereas for \(n > 1 \) the fluid is shear-thickening.

Smy et al. proposed another strong feature for determining printing strategy and extrusion parameters.\(^{10} \) The authors described an approach to predict the maximum span by which a structure can be constructed in green without experiencing deformation, as depicted in Equation (3).\(^{10} \)

\[
C = \frac{14 \times h^2}{D^2}
\]

where: \(G \) = shear modulus, \(r \) = specific weight of the ink, \(S \) = relation between the span length and the layer height and \(D \) = nozzle diameter.

Another challenge experienced during the printing process is the collapse of free walls, mostly associated with the rheological properties of the ink. Figure 7 exemplifies a case in which the poor stability of the ink leads to a completely collapse of the structure.

In turn, M’Barki et al. proposed an equation to define the maximum printable height (\(h_{\text{max}} \)) of a free wall, without the risk that it will collapse due to gravitational action, Equation (4).\(^{10} \)

\[
h_{\text{max}} = a \cdot \frac{v^{2/3}}{\rho g}
\]

where: \(v \) is the dynamics yield stress (Pa), \(\rho \) is the specific weight of the ink and \(g \) is the gravitational contribution (9.81 m/s^2)

Future Perspectives

An urgent trend in robocasting is 4D printing. The conception that “time” can be incorporated into the conventional concept of 3D printing as the 4th dimension is commonly known as 4D printing.\(^{10} \) This novel model of printing can potentially benefit many different areas in biomedical applications, such as tissue regeneration, medical device fabrication, and drug delivery.\(^{10} \)

A perceived possibility to conduct a 4D printing is to combine different materials during processing. Multi-material printing, i.e. polymer and ceramics, could prevent the secondary shaping after printing from the polymeric materials.\(^{10} \) In most of the reported AM techniques, the form of the as-printed green body usually dictates the final shape of the sintered structure, while post-printing secondary shaping of the green body obtained from the AM process is minimal. However, a deep understanding on how external stimuli such as temperature, moisture, light, magnetic field, electric field, pH, ionic concentration or chemical compounds can affect the characteristics of the printed materials is yet to be established.

Another possibility in the AM field is the obtention of smart materials. Some interesting features could be achieved using this type of materials such as controlled swelling, predicted shape alterations, functionalities change and self-assembly.\(^{10} \) Self-shaping geometries, like as bending, twisting or combinations of these two basic movements, can be implemented by programming the material’s microstructure to undergo local anisotropic shrinkage during heat treatment, as presented in Figure 8. This functional design may be achieved by magnetically aligning functionalized ceramic platelets in a liquid ceramic suspension, subsequently consolidated through an established enzyme–catalysed reaction, and finally achieved deliberate control over shape change during the sintering step.\(^{10} \)

Regarding the robocasting process, geopolymeric slurries could be

Table 4 – Relationship between additives used, suspended solids loading, average particle size, and relative density of the final part.

<table>
<thead>
<tr>
<th>Materials</th>
<th>Additives used</th>
<th>Solid loading (v/v)</th>
<th>Average grain size ((d_{50}))</th>
<th>Relative density</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiC</td>
<td>Darvan 670, PEG 10.000 and NH(_4)Ac</td>
<td>44%</td>
<td>0.7 cm</td>
<td>~95%</td>
<td>80</td>
</tr>
<tr>
<td>Al(_2)O(_3)</td>
<td>Pluronic F-127</td>
<td>39%</td>
<td>0.3 cm</td>
<td>~97%</td>
<td>17</td>
</tr>
<tr>
<td>Al(_2)O(_3)</td>
<td>Darvan C, psyllium and Glycerol</td>
<td>49%</td>
<td>0.4 cm</td>
<td>~98%</td>
<td>85</td>
</tr>
<tr>
<td>Al(_2)O(_3)</td>
<td>Darvan 821A, PVP</td>
<td>55%</td>
<td>0.6 cm</td>
<td>92%</td>
<td>86</td>
</tr>
<tr>
<td>3Y-TZP</td>
<td>Dolapix CE 64/ NH(_4)OH</td>
<td>50%</td>
<td>0.04 cm</td>
<td>~99%</td>
<td>87</td>
</tr>
<tr>
<td>3Y-TZP</td>
<td>C(_3)H(_4)O(_3)/C(_2)H(_6)O(_3)</td>
<td>38%</td>
<td>~0.4 cm</td>
<td>94%</td>
<td>8</td>
</tr>
<tr>
<td>Si(_3)N(_4)</td>
<td>H–PEI/L–PEI</td>
<td>52%</td>
<td>0.77 cm</td>
<td>~99%</td>
<td>7</td>
</tr>
<tr>
<td>Si(_3)N(_4)</td>
<td>H–PEI/L–PEI, Darvan-821</td>
<td>44%</td>
<td>0.5 cm</td>
<td>97%</td>
<td>27</td>
</tr>
</tbody>
</table>

Figure 5 – Representation of mechanisms to improve the particle dispersion. Reproduced with permission.\(^{6} \) Copyright 2018, John Wiley and Sons.

Figure 6 – Rheological behaviors required for ceramic robocasting. Reproduced with permission.\(^{6} \) Copyright 2018, John Wiley and Sons.

Figure 7 – Experimental buckling response of the free wall, the three stages of failure: buckling initiation, buckling development and full collapse. Reproduced with permission.\(^{6} \)

Figure 8 – Illustration of the proposed self-shaping mechanism: (a) bending and (b) twisting configuration, based on bottom-up shaping method of ceramic suspensions. Reproduced with permission.\(^{10} \)
good candidates as smart materials for 4D printing provided their reaction over time could be effectively controlled. 46 However, within bioceramic content, the evidence on works reported in 4D systems does not show specific cases that support these advances.

In the last decades, a discussion on how to relate AM and TE brou...

75. Daguano et al. - INTERNATIONAL JOURNAL OF ADVANCES IN MEDICAL BIOTECHNOLOGY - IJAMB Vol. 2 N.1, 2019 State of the art in the use of...