Skip to main navigation menu Skip to main content Skip to site footer

Special Edition Submission: "3D Printing for Medicine: biomaterials, processes and techniques"

Vol. 2 No. 1 (2019): March-September

Approaches to the development of 3d bioprinted skin models: the case of natura cosmetics



We are close to achieving the production of a biomimetic functional skin and this advance is mainly due to the demand that is not limited to the field of regenerative medicine, the need for transplantation of this organ due to the aging of the population, but for ethical reasons related to the tests of safety and efficacy of new formulas in animal models by the cosmetic and pharmaceutical industries. The limitations involved in traditional 2D cell culture approaches and manual techniques for biomimetic generation have driven the use of innovative technologies such as 3D bioprinting. One of the main advantages of the bioprinted skin is the authenticity, scalability and reproducibility of tissues compared to conventional constructs, via precise positioning of multiple cell types and the inclusion of appendages. The models of bioprinted skins will serve as a platform for the development of new formulations, molecule testing, disease simulation, as well as an alternative to chronic wound biocuratives and clinical transplants. This paper reviews the state-of-the-art approaches available for skin model bioprinting, discusses the context of the drug-cosmetic industry in the adoption of these models and presents the characteristics of the project under development at Natura Cosmetics.


  1. Kang, Hyun-Wook, et al. "A 3D bioprinting system to produce human-scale tissue constructs with structural integrity." Nature biotechnology 34.3 (2016): 312.
  2. Vijayavenkataraman, S. "3D bioprinted skin: the first ‘to-be’successful printed organ?." (2017): 143-144.
  3. Vijayavenkataraman, S., W. F. Lu, and J. Y. H. Fuh. "3D bioprinting of skin: A state-of-the-art review on modelling, materials, and processes." Biofabrication 8.3 (2016): 032001.
  4. Jung, K.-M.M., Lee, S.-H.H., Jang, W.-H.H., Jung, H.-S.S., Heo, Y., Park, Y.-H.H., Bae, S.,Lim, K.-M.M., Seok, S.H., 2014. KeraSkin™-VM: a novel reconstructed human epidermis model for skin irritation tests. Toxicol. in Vitro 28, 742–750. http://dx.doi. org/10.1016/j.tiv.2014.02.014.
  5. Lemper, M., De Paepe, K., Rogiers, V., 2014. Practical problems encountered during the cultivation of an open-source reconstructed human epidermis model on a polycarbonate membrane and protein quantification. Skin Pharmacol. Physiol. 27, 106–112.
  6. Catarino, C.C., T. do Nascimento Pedrosa, P.C. Pennacchi, S.R. de Assis, F. Gimenes, M.E.L. Consolaro,
  7. S.B. de Moraes Barros, S.S. Maria-Enlger, Skin corrosion test: comparison between reconstructed human epidermis and full thickness skin models, European Journal of Pharmaceutics and Biopharmaceutics (2018), doi:
  8. Girardeau-Hubert, Sarah,Céline Deneuville, Hervé Pageon, Kahina Abed, Charlotte Tacheau, Nükhet Cavusoglu, Mark Donovan, Dominique Bernard & Daniel Asselineau. Reconstructed Skin Models Revealed Unexpected Differences in Epidermal African and Caucasian Skin. Scientific Reports | (2019) 9:7456 | Nature.
  9. MARIA-ENGLER, S. S. et al. Artificial skin as an alternative to animal testing.
  10. CiênciaVeterinárianosTrópicos, v. 13, n. Suppl. 1, p. 118-125, 2010.
  12. Stuchi . A New Reconstructed Human Epidermis For In Vitro Skin Irritation Testing. TOXICOLOGY IN VITRO, V. 42, P. 31-37, 2017.
  14. CURADO ALCF. Redução da dor em pacientes queimados através da acupuntura [Monografia].
  15. Goiânia:Universidade Estadual de Goiás; 2006.
  16. CRUZ, B.F.; CORDOVIL, P.; BATISTA, K. N. M.. Epidemiological profile of patients who suffered burns in Brazil: literature review.Perfil epidemiológico de pacientes que sofreram queimaduras no Brasil: revisão de literatura. Rev Bras Queimaduras. 11(4):246- 50. 2012.
  17. MOCK C, PECK M, PEDEN M, KRUG E. A WHO plan for burn prevention and care. Geneva: World Health Organization; 2008.
  18. MCHALE, M.K.; BERGMANN, N.M.; AND WEST, J.L. Histogenesis in ThreeDimensional Scaffolds.
  19. Handbook of Stem Cells. Adult and Fetal Stem Cells. Volume II. 2013.
  20. Sarkiri, Maria, Stephan C. Fox 2 , Lidy E. Fratila-Apachitei 1,* and Amir A. Zadpoor. (2019). Review: Bioengineered Skin Intended for Skin Disease Modeling. Int. J. Mol. Sci. 2019, 20, 1407; doi:10.3390/ijms20061407.
  21. Bergin, J. 2016: Bioprinting: Technologies and Global markets, BCC Research, USA.
  22. 3D Bioprinitng Market Size, share and trends analysis report by technology (Magnetic levitation , inkjet based, syringe based, laser based), by application , and segment forecast, 2018-2024, 2018. Available from:
  23. Augustine, Robin. (2018) REVIEW PAPER. Skin bioprinting: a novel approach for creating artificial skin from synthetic and natural building blocks. Progress in Biomaterials (2018) 7:77–92.
  24. Wei-Cheng,Yan; Pooya Davoodi, S. Vijayavenkataraman, Yuan Tian, Wei Cheng Ng, Jerry Y.H. Fuh, Kim Samirah Robinson, Chi-Hwa Wang. 2018. 3D bioprinting of skin tissue: From pre-processing to final product evaluation. Adr (2018), doi:10.1016/j.addr.2018.07.016
  25. Vasconcelos, Yuri. Pele de Laboratório. (2016). RevistaFAPESP. Pesquisa Maria-Engler, Silvya Stucchi.
  26. Universidade Estadual de São Paulo/USP. Junho/2016.
  27. MARIA‐ENGLER, SilvyaStuchi. Assessing the effects of advanced glycation end products in the skin.
  28. British Journal of Dermatology, v. 176, n. 1, p. 12-13, 2017.
  29. JUNQUEIRA & CARNEIRO. Basic Histology. 11th Ed. McGraw-Hill. 2005.
  30. Qiu, J., Zhong, L., Zhou, M. et al (2016). Establishment and Characterization of a Reconstructed Chinese Human Epidermis Model. International Journal of Cosmetic Science 38, 60–67. doi:10.1111/ics.12249.
  31. Kamel RA, Ong JF, Eriksson E, Junker JP, Caterson EJ. Tissue engineering of skin. Journal of American College of Surgeons. 2013;217(3):533-555.
  32. Ponec, M., Gibbs, S., Pilgram, G. et al. (2001). Barrier Function in Reconstructed Epidermis and Its Resemblance to Native Human Skin. Skin Pharmacology and Applied Skin Physiology 14, 63–71. doi:10.1159/000056392.
  33. CALIARI SR, RAMIREZ MA, HARLEY BAC. The development of collagen-GAG scaffold-membrane composites for tendon tissue engineering. Biomaterials. 32:8990–8998. 2011.
  34. NICU, Carina et al. A guide to studying human dermal adipocytes in situ. Experimental dermatology, v.
  35. , n. 6, p. 589-602, 2018.
  36. MOON, Kyoung Mi et al. The effect of secretory factors of adipose-derived stem cells on human keratinocytes. International journal of molecular sciences, v. 13, n. 1, p. 1239-1257, 2012.
  37. Schmidt BA, Horsley V.(2013) Intradermal adipocytes mediate fibroblast recruitment during skin wound healing. Development.;140(7):1517-27. doi: 10.1242/dev.087593.
  38. POWMAY, Y. et al., 2004. A simple reconstructed human epidermis: Preparation of the culture model and utilization in in vitro studies. Achives of Dermatological Reserarch, v. 296, n.5, p. 203-211.
  39. DE VUYST et al., 2014. Reconstruction of normal and pathological human epidermis on polycarbonate filter. Methods in Molecular Biology, v. 1195, p. 191-201.
  40. Zhang Z1, Michniak-Kohn BB. 2012.Tissue engineered human skin equivalents. Pharmaceutics. 2012 Jan 6;4(1):26-41. doi: 10.3390/pharmaceutics4010026.
  41. Shevchenko RV, James SL, James SE (2010) A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface 7:229–258. https ://
  42. BERTHIAUME, F.; MAGUIRE, T.J.AND YARMUSH, M.L.Tissue Engineering and Regenerative Medicine: History, Progress, and Challenges. Annu. Rev. Chem. Biomol. Eng. 2:403–30. 2011.
  43. Tarassoli, Sam.P., Zita M. Jessop, Ayesha Al-Sabah,Neng Gao, Sairan Whitaker, Shareen Doak, Iain S. Whitaker. Review. Skin tissue engineering using 3D bioprinting: An evolving research field. 1748-6815/© 2017 Published by Elsevier Ltd on behalf of British Association of Plastic, Reconstructive and Aesthetic Surgeons.
  44. YANNAS IV, BURKE JF, ORGILL DP, SKRABUT EM. Wound tissue can utilize a polymeric template to synthesize a functional extension of skin. Science. 215:174–76. 1982.
  45. Groos N, Guillot M, Zilliox R, Braye F. Use of an artificial dermis (Integra) for the reconstruction of extensive burn scars in children. About 22 grafts. Eur J Pediatr Surg. 2005;15(3):187-92.
  46. CANDIDO, Luiz Claudio. Livro do Feridologo. Tratamento Clinico-cirurgico de Feridas Cutaneas Agudas e Cronicas. ISBN 85-906486-0-5. 2006.
  47. BELL E, EHRLICH HP, BUTTLE DJ, NAKATSUJI T. Living tissue formed in vitro and accepted as skin equivalent tissue of full thickness. Science. 211:1052–54. 1981.
  48. FALANGA V & SABOLINSKI M. (1999) A bilayered living skin construct (APLIGRAF) accelerates complete closure of hard-to-heal venous ulcers. Wound Repair Regen. 7(4):201-7.
  49. SHORES JT, GABRIEL A, GUPTA S. Skin substitutes and alternatives: a review. Adv Skin Wound Care.
  50. (9 Pt 1):493-508. 2007.
  51. CASSIDY, C. et al. Biobrane versus duoderm for the treatment of intermediate thickness burns in children: a prospective, randomized trial. (2005) Burns [S. l.], v. 31, n. 7, p. 890-893. Disponível em:<>.
  52. Vig Komal, Atul Chaudhari, Shweta Tripathi, Saurabh Dixit, Rajnish Sahu, Shreekumar Pillai, Vida A. Dennis and Shree R. Singh .Review Advances in Skin Regeneration Using Tissue Engineering Int. J. Mol. Sci. 2017, 18, 789; doi:10.3390/ijms18040789
  53. JEAN J, GARCIA-PÉREZ ME, POULIOT R. Bioengineered Skin: The Self- Assembly Approach. J Tissue Sci Eng S5:001. 2011. doi: 10.4172/2157-7552.S5-001.
  54. GROLL, J.; BOLAND, T.; BLUNK, T.; BURDICK, J. A.; CHO, D.-W.; DALTON, P. D.; DERBY, B.; FORGACS, G.; LI, Q.; MIRONOV, V. A.; MORONI, L.; NAKAMURA, M.; SHU, W.; TAKEUCHI, S.; VOZZI, G.; WOODFIELD, T. B. F.; XU, T.; YOO, J. J.; MALDA, J. Biofabrication: reappraising the definition of an evolving field. Biofabrication, v. 8, n. 1, p. 13001, 2016.
  55. MORONI, L.; BOLAND, T.; BURDICK, J. A.; DE MARIA, C.; DERBY, B.; FORGACS, G.; GROLL, J.; LI, Q.; MALDA, J.; MIRONOV, V. A.; MOTA, C.; NAKAMURA, M.; SHU, W.; TAKEUCHI, S.; WOODFIELD, T. B. F.; XU, T.; YOO, J. J.; VOZZI, G. Biofabrication: A Guide to Technology and Terminology. Trends in Biotechnology, v. 36, n. 4, p. 384–402, 2018.
  56. WATANABE, J. & ISHIHARA, Phosphorylcholine and poly(D,L-lactic acid) containing copolymers as substrates for cell adhesion, Artif. Organs 27; 242 – 248. 2003.
  57. OZBOLAT, I. T.; MONCAL, KAZIM K.; GUDAPATI, HEMANTH. Evaluation of bioprinter Technologies. Additive Manufacturing. Volume 13, Pages 179–200. 2017.
  58. Jasper L. Tran, To Bioprint or not to Bioprint, 17 (1) N.C. J.L. & TECH., 123, 132 (2015), refers to bioprinting as “the stepchild of 3D Printing and synthetic biology”.
  59. MURPHY, S. V.; ATALA, A. (2014) 3D bioprinting of tissues and organs. Nature Biotechnology, v. 32, n. 8, p. 773.
  60. Chua, Chee and Wai Yee Yeong, Bioprinting : Principles and Applications, 53 World Scientific Publishing Company (2015); Mathew Varkey and Anthony Atala, Organ bioprinting: A closer look at ethics and policies, 5 Wake Forest Journal of Law & Policy 275, 277 (2015).
  61. BOLAND, V. T MIRONOV, A. GUTOWSKA, E.A. ROTH, R.R. MARKWALD, Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels, Anat. Rec. A Discov. Mol. Cell Evol. Biol. 272 (2003) 497–502.
  62. BURG, T.C.; C. A P. CASS, R. GROFF, M. E. PEPPER, K. J. L. BURG, Building off-the-shelf tissue- engineered composites, Philos. T. R. Soc A 368, 1839-1862 (2010).
  63. MOON S.J. et al., Layer by layer three-dimensional tissue epitaxy by cell-laden hydrogel droplets, Tissue Eng. Pt-C. Meth. 16, 157-166 (2010).
  64. XU F. et al., A droplet-based building block approach for bladder smooth muscle cell (SMC) proliferation,Biofabrication 2, 014105 (2010).
  65. MIRONOV, V.; R.P. VISCONTI, V. KASYANOV, G. FORGACS, C.J. DRAKE, R.R. MARKWALD, Organ printing: tissue spheroids as building blocks, Biomaterials 30 (2009) 2164–74.
  66. GAETANI, P. DOEVENDANS, C.H.G. METZ, J. ALBLAS, E. MESSINA, A. GIACOMELLO, et al., Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells, Biomaterials 33 (2012) 1782e1790, http://
  67. OZBOLAT, I. T., AND HOSPODIUK, M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 76, 321–343.2016. doi:10.1016/j. biomaterials.2015.10.076
  68. SCHIELE N.R. et al., Laser-based direct-write techniques for cell printing, Biofabrication 2, 032001 (2010).
  69. GRUENE M. et al., Laser Printing of Stem Cells for Biofabrication of Scaffold-Free Autologous Grafts,Tissue Eng. Pt-C. Meth. 17, 79-87 (2011).
  70. BARRON, J.A.; D. B. KRIZMAN, B. R. RINGEISEN, Laser Printing of Single Cells: Statistical Analysis, Cell Viability, and Stress, Ann. Biomed. Eng. 33, 121-130 (2005).
  71. Koch L, Deiwick A, Schlie S, Michael S, Gruene M, Coger V, et al. Skin tissue generation by laser cell printing. Biotechnol Bioeng. 2012;109(7): 1855–63.
  72. Levato R, WebbWR, Otto I A, Mensinga A, Zhang Y, van Rijen M, van Weeren R, Khan IMand Malda J 2017 The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells Acta Biomater. 61 41–53
  73. Malda, J., Visser, J., Melchels, F.P., Jüngst, T., Hennink, W.E., Dhert, W.J., Groll, J., & Hutmacher, D.W. (2013). 25th anniversary article: Engineering hydrogels for biofabrication. Advanced materials, 25 36, 5011-28 .
  74. GROLL, J.; BURDICK, J. A.; CHO, D.-W.; DERBY, B.; GELINSKY, M.; HEILSHORN, S. C.; JÜNGST, T.; MALDA, J.; MIRONOV, V. A.; NAKAYAMA, K.; OVSIANIKOV, A.; SUN, W.; TAKEUCHI, S.; YOO, J. J.; WOODFIELD, T. B. F. A definition of bioinks and their distinction from biomaterial inks. Biofabrication, v. 11, n. 1, p. 13001, 2018.
  75. Kyle, S., Jessop, S.P.Tarassoli‡A.Al-Sabah*I.S.Whitaker†. 9 - Assessing printability of bioinks.2018. Bioprinting for Reconstructive Surgery. Techniques and Applications. Pages 173-189.
  76. PAXTON, N.; SMOLAN, W.; BÖCK, T.; MELCHELS, F.; GROLL, J.; JUNGST, T. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Biofabrication, v. 9, n. 4, p. 44107, 2017.
  77. Gao, C. Ruan and W. Li. (2019). High-strength hydrogel-based bioinks. Mater. Chem. Front. DOI: 10.1039/C9QM00373H.
  78. Pourchet, L., Amélie Thepot, Marion Albouy, Edwin J. Courtial, Aurélie Boher, Loïc J. Blum, and Christophe A. Marquette. (2017). Human Skin 3D Bioprinting Using Scaffold-Free Approach. Adv. Healthcare Mater. 2017, 6, 1601101. 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  79. Zhang, Yu Shrike, et al. "3D bioprinting for tissue and organ fabrication." Annals of biomedical engineering 45.1 (2017): 148-163.
  80. BENYUS, J.M. Biomimética Inovação Inspirada pela Natureza. Editora: Cultrix. 2005.
  81. Sun Y, Wang Q. In-silico analysis on 3d biofabrication using kinetic monte carlo simulations. Adv Tissue Eng Regen Med Open Access. 2017;2(5):256–259. DOI: 10.15406/atroa.2017.02.00045
  82. Wei Long, Ng, et al. "Proof-of-concept: 3D bioprinting of pigmented human skin constructs." Biofabrication 10.2 (2018): 025005.
  83. Planz, V., Lehr, C.-M. and Windbergs, M. (2016). In Vitro Models for Evaluating Safety and Efficacy of Novel Technologies for Skin Drug Delivery. Journal of Controlled Release 242, 89-104. doi:10.1016/j.jconrel.2016.09.002.
  84. Michael S, Sorg H, Peck CT, Koch L, Deiwick A, Chichkov B, et al. Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS One. 2013;8(3):e57741.
  85. He, Peng, Junning Zhao4, Jiumeng Zhang2,3, Bo Li2,3, Zhiyuan Gou2,3, Maling Gou2,3 and Xiaolu Li1,4.
  86. Bioprinting of skin constructs for wound healing. He et al. Burns & Trauma (2018) 6:5 DOI 10.1186/s41038-017-0104-x
  87. Admane, Prasad Abhishak C. Gupta, Prashanth Jois, Subhadeep Roy, Chittur Chandrasekharan Lakshmanan, Gurpreet Kalsi, Balaji Bandyopadhyay, Sourabh Ghosh. (2019) Direct 3D bioprinted full- thickness skin constructs recapitulate regulatory signaling pathways and physiology of human skin. Bioprinting 15. e00051.
  88. Lee W, Debasitis JC, Lee VK, Lee JH, Fischer K, Edminster K, et al. Multilayered culture of human skin fibroblasts and keratinocytes through threedimensional freeform fabrication. Biomaterials. 2009;30(8):1587–95.
  89. Lee, Vivian, Gurtej Singh, John P. Trasatti,Chris Bjornsson, Xiawei Xu, Thanh Nga Tran, Seung-Schik Yoo, Guohao Dai and Pankaj Karande. Design and Fabrication of Human Skin by Three-Dimensional Bioprinting. TISSUE ENGINEERING: Part C. Volume 20, Number 6, 2014. Mary Ann Liebert, Inc. DOI: 10.1089/ten.tec.2013.0335
  90. Abaci, H.E., Z. Guo, A. Coffman, B. Gillette, W.H. Lee, S.K. Sia, et al.Human skin constructs with spatially controlled vasculature using primary and iPSC-derived endothelial cells. Adv Healthc Mater, 5 (14) (2016), pp. 1800-1807.
  91. Cubo, Nieves, et al. "3D bioprinting of functional human skin: production and in vivo analysis." Biofabrication 9.1 (2016): 015006.
  92. MARIA-ENGLER, S. S. Harnessing skin reconstruction for testing topical agents in a healthy and diseased skin. Toxicology Letters, n. 259, p. S45, 2016.
  93. Pedrosa, T. do N., Catarino, C. M., Pennacchi, P. C. et al. (2017). A New Reconstructed Human Epidermis for in Vitro Skin Irritation Testing. Toxicology in Vitro : An International Journal Published in Association with BIBRA 42, 31–37.doi:10.1016/j.tiv.2017.03.010.
  94. Pennacchi, P.C., de Almeida, M. E. S., Gomes, O. L. A. et al. (2015). Glycated Reconstructed Human Skin as a Platform to Study the Pathogenesis of Skin Aging. Tissue Engineering. Part A 21, 2417–25. doi:10.1089/ten.TEA.2015.0009.
  96. Jia,D., D. J. Richards, S. Pollard, Y. Tan, J. Rodriguez, R. P. Visconti, T. C. Trusk, M. J. Yost, H. Yao, R.
  97. R. Markwald, Y. Mei, Acta Biomater. 2014, 10, 4323.
  98. Yu,Z., Y. Rui, O. Liliang, D. Hongxu, Z. Ting, Z. Kaitai, C. Shujun, S. Wei, Biofabrication 2014, 6, 035001.
  99. Yang,Y.I., D. L. Seol, H. I. Kim, M. H. Cho, S. J. Lee, Curr. Appl. Phys. 2007, 7, e103.
  100. Bini, A., P. Haidaris, B. J. Kudryk, Encyclopedic Reference of Vascular Biology and Pathology, Springer Verlag, New York 2000.
  101. OECD. In vitro skin irritation: Reconstructed human epidermis test method. OECD guidelines for the test of chemicals. Section 4. July, 2015. 1-21.
  102. Takagi R, Ishimaru J, Sugawara A et al. Bioengineering a 3D integumentary organ system from iPS cells using an in vivo transplantation model. Sci. Adv. 2(4), e1500887 (2016).
  103. Rodrigues Neves C., Gibbs S. (2018) Progress on Reconstructed Human Skin Models for Allergy Research and Identifying Contact Sensitizers. In: . Current Topics in Microbiology and Immunology. Springer, Berlin, Heidelberg.
  104. Li,Z., S. Huang, X. Fu. 3D bioprinting skin. General Hospital of PLA, Beijing, China 3D Bioprinting for Reconstructive Surgery. © 2018 Elsevier Ltd. All rights reserved.


Download data is not yet available.


Metrics Loading ...