Skip to main navigation menu Skip to main content Skip to site footer

Meeting of Natural Polymers - EPNAT

Vol. 2 No. 2 (2019): October-February

Effect of crosslinker and nanostructure on adsorption and release of paraquat herbicide from different natural hydrogel nanocomposites

DOI
https://doi.org/10.25061/2595-3931/IJAMB/2019.v2i2.36
Published
2020-03-29

Abstract

Hidrogéis compostos em polímeros naturais que tenham sido usados em diferentes setores devido a suas propriedades de biocompatibilidade, biodegradabilidade, custo relativamente baixo e atoxicidade. O objetivo deste estudo foi preparar hidrogéis de alginato / amido reticulados com diferentes ícones (Mn 2+ , Zn 2+ ou Ca 2+ ), incluir zeólito ou nanoclay, e avaliar o efeito do reticador e nanoestrutura na adsorção e comportamento de seleção do herbicida paraquat. Os hidrogéis e seus nanocompósitos foram preparados por imersão de soluções de alginato / amido, alginato / amido / nanoclay ou alginato / amido / zeólita em recipientes que recebem uma solução reticuladora (MnCl 2 , ZnCl 2ou CaCl 2 ) a 25 ° C. Todos os hidrogênios apresentaram boa capacidade de adsorção, principalmente os hidrogênios nanoestruturados com nanoclay e zeólito. Como recursos polares, selecione alta interação com moléculas de paraquat. O comportamento da liberação também foi muito interessante, sendo que a quantidade de solução de formação de nanocompósitos de hidrogel pode controlar a liberação de paraquat, que tipos de materiais podem ser usados como veículos de transporte no sistema de liberação controlada.

References

  1. Jr Canevarolo SV, Um texto básico para tecnólogos e engenheiros. Conceito de Polímeros. In: Ciência dos Polímeros 3. ed. São Paulo: Artiliber, 2006.
  2. Guilherme MR, Aouada FA, Fajardo AR, Martins AF, Paulino AT, Davi MFT, Rubira AF, Muniz EC, Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrer: A review. Eur Polym J 72 : 365-385 (2015).
  3. Lazarini SC, Lustri WR, Bacterial cellulose: Application as drug delivery system. Int J Adv Pharm Med Biotechnol 1 : 7-10 (2018).
  4. Soares RMD, Siqueira NM, Prabhakaram MP, Ramakrishna S, Electrospinning and electrospray of bio-based and natural polymers for biomaterials development. Mater Sci Eng C 92 : 969-982 (2018).
  5. Udawattha C, De Silva, DE, Galkanda H, Halwatura R, Performance of natural polymers for stabilizing Earth blocks. Act Mater 2 : 23-32 (2018).
  6. Bashir A, Jabeen S, Gull N, Islam A, Sultan M, Ghaffar A, Khan SM, Iqbal SS, Jamil T, Co-concentration effect of silane with natural extract on biodegradable polymeric films for food packaging. Int J Biol Macromol 106 : 351-359 (2018).
  7. Sabale V, Paranjape A, Patel V, Sabale P, Characterization of natural polymers from jackfruit pulp, calêndula flowers and tara seeds as mucoadhesive and controlled release componentes in buccal tablets. Int J Biol Macrmol 95 : 321-330 (2017).
  8. Ragunathan S, Govindasamy G, Raghul DR, Karuppaswamy M, VijayachandraTogo RK, Hydroxyapatite reinforced natural polymer scaffold for bone tissue regeneration. Mater Today-Proc In Press (2019).
  9. Saruchi, Kumar V, Mittal H, Alhassan SM, Biodegradable hydrogels of tragacanth gum polysaccharide to improve water retention capacity of soil and environment-friendly controlled release of agrochemicals. Int J Biol Macromol 132 : 1252-1261 (2019).
  10. Fernandes RS, Tanaka FN, De Moura MR, Aouada FA, Development of alginate/starch-based hydrogels crosslinked with different ions: hydrophilic, kinetic and spectroscopic properties. Mater Today Commun 21 : 100636 (2019)
  11. Chitra G, Franklin DS, Sudarsan S, Sakthivel M, Guhanathan S, Noncytotoxic silver and gold nanocomposite hydrogels with enhanced antibacterial and wound healing application. Polym Eng Sci 58 : 2133-2142 (2018).
  12. Carbinatto FM, Sábio RM, Meneguin AB, Cestari SE, Cruz SA, Barud HS, Bacterial cellulose-based hydrogels for wound healing: characterization and in vitro evaluation. Int J Adv Pharm Med Biotechnol 1 : 21-30 (2018).
  13. Fernandes RS, De Moura, MR, Glenn GM, Aouada FA, Thermal, microstructural, and spectroscopic analysis of Ca2+ alginate/clay nanocomposite hydrogel beads. J Mol Liq 265 : 327-336 (2018).
  14. Seok JY, Lee DJ, Lim ST, Reddy CK, Preparation and characterization of inclusion complexes between debranched maize starches and conjugated linoleic acid. Food Hydrocoll 96 : 503-509 (2019).
  15. Mahmood K, Kamilah H, Shang PL, Sulaiman S, Ariffin F, Alias AK, A review: Interaction of starch/non-starch hydrocolloid blending and the recent food applications. Food Biosci 19 : 110-120 (2017).
  16. Belibi PC, Daou TJ, Ndjaka JMB, Michelin L, Brendlé J, Nsom B, Durand B, Tensile and water barrier properties of cassava starch composite films reinforced by synthetic zeolite and beidellite. J Food Eng 115 : 339-346 (2013).
  17. Martins M, Barros AA, Quraishi S, Gurikov P, Raman SP, Smirnova I, Duarte ARC, Reis RL, Preparation of macroporous alginate-based aerogels for biomedical applications. J Supercrit Fluid 106 : 152-159 (2015).
  18. Wang Q, Wang Y, Chen L, A green composite hydrogel based on cellulose and clay as efficient absorbent of colored organic effluent. Carbohyd Polym 210 : 314-321 (2019)
  19. Chen Y, Kang S, Yu J, Wang Y, Zhu J, Hu Z, Tough robust dual responsive nanocomposite hydrogel as controlled drug delivery carrier of aspirin. J Mech Behav Biomed Mater 92 : 179-187 (2019).
  20. De Moraes MA, Vasconcellos FC, Fraceto LF, Beppu MM, Chitosan and alginate biopolymer membranes for remediation of contaminated water with herbicides. J Environ Manage 131 : 222 – 227 (2013).
  21. Barbosa DHO, De Moura MR, Aouada FA, Polysaccharide-based nanocomposite hydrogels with zeolite: Evaluation of the sorption process of pesticide paraquat. Quím Nova 41 : 380 – 385 (2018).
  22. Etcheverry M, Cappa V, Trelles J, Zanini G, Montmorillonite-alginate beads: Natural mineral and biopolymers based sorbent of paraquat herbicides. J Environ Chem Eng 5 : 5868 – 5875 (2017).
  23. Pukcothanung Y, Siritanon T, Rangsriwatananon K, The efficiency of zeolite Y and surfactante-modified zeolite Y for removal of 2,4-diclorophenoxyacetic acid and 1,1’-dimethyl-4,4’-bipyridinium ion. Micropor Mesopor Mat 258 : 131 – 140 (2018).
  24. Garcia JAF, Síntese e caracterização de novos bionanocompósitos híbridos constituídos por polissacarídeos carboximetilcelulose e nanoargila com possível aplicação para remoção ou liberação controlada de defensivo agrícola paraquat. 2018. 117 f. Dissertação (Mestrado em Ciência dos Materiais) – Departamento de Física e Química, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Ilha Solteira, SP, 2018.
  25. Koh SM, Dixon JB, Preparation and application of organo-minerals as sorbents of phenol, benzene and toluene. Appl Clay Sci. 18 : 111 – 122 (2001).
  26. Silva MS, Concenza DS, Grillo R, De Melo NFS, Tonello PS, De Oliveira LC, Cassimiro DL, Rosa AH, Fraceto LF, Paraquat-loaded alginate/chitosan nanoparticles: Preparation, characterization and soil sorption studies. J Hazard Mater 190 : 366 – 374 (2011).
  27. Aouada FA, De Moura MR, Mattoso LHC, Biodegradable hydrogel as delivery vehicle for the controlled release of pesticide. In: Stoytcheva, M. ed by Pesticides—Formulations, Effects, Fate. InTech, Rijeka, pp 81–102 (2011).
  28. Jampílek J, Král’ová K, Nanopesticide: Preparation, targeting and controlled release. In: New Pesticides and Soil Sensors. ed by Elsevier. pp 81 -127 (2017).

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...